Dead Zones and Dirty Dishes: A Case Study in Alternatives Assessment - US Phosphate Policy

Bob Hamilton, Regulatory Policy Director
Doug Feenstra, Research Scientist
Amway

4/11/2012
Outline

• Introduction
 – Who is Amway?
 – Some background on phosphates
 – The history of regulation
• Why can’t phosphate just be swapped out with something else?
• Primary items industry must consider
 – Safety
 – Performance
• Additional items industry must consider
 – Compatibility with machines
 – Product shelf life and package compatibility
 – Process-ability
 – Cost
• What Amway did
• Conclusions
Who is Amway?

- A modest sized global company focused on beauty products, nutritional supplements, home and personal care products and some durable goods.
- A leader in the direct selling industry with over 3,000,000 registered distributors.
- A company that takes seriously its responsibility to develop safe and “green” products for its consumers.
Positively, phosphates...

- Function as excellent builders within the detergent formulation, giving threshold level performance.

- Allow for acceptable levels of cleaning at a controlled (safer) pH.

- Help suspend certain types of particulate matter.

- Aid in killing germs.

- Are cost effective.

- Are environmentally benign except...
However, phosphates also contribute to eutrophication
Chronology of phosphate regulation

- 1960’s – In an attempt to get away from phosphate in laundry detergents the industry pours hundreds of millions of dollars into NTA research as a potential phosphate replacement.
- Late 1960’s – Lake and waterway deterioration becomes a particular public concern.
- 1970 – The detergent industry voluntarily agrees to reduce laundry detergent phosphorous concentrations to 8.7%.
- 1971 – Under concerns of carcinogenicity of NTA, the Surgeon General “requests” the industry discontinue its use.
- 1970’s and 80’s – a number of states and municipalities pass legislation completely banning NTA and/or phosphate from laundry detergents.
- 1980 – EPA declares NTA’s cancer risk too small to pursue federal regulatory action.
- 2008 – some municipalities ban the use of phosphate in automatic dish detergents.
- 2010 – many states ban the use of phosphate in automatic dish detergents.
Why can’t phosphate just be swapped out with something else?

- Short answer: because nothing exists that does everything phosphate can do in a formulation and phosphate sets a very high bar for replacement.

- What about novel chemical compounds?
 - TSCA takes time and money
 - NTA example for Laundry

- So we’re left with exploring combinations and trying to balance the positive and negative effects (example: increased alkalinity aids in cleaning but is less safe).
Primary items industry must consider

- Safety
- Performance
Primary items industry must consider: Safety

- Inherent human toxicity
- Environmental safety
 - Eutrophication
 - Biodegradability
 - Effects of by-products
 - Mobilization of heavy metals
- Product use safety
- Product misuse safety
- Industrial safety
Primary items industry must consider: Performance

- General Cleaning
- Spotting/filming
- Prevention of etching

unwashed

rainbow hue chords with heavy filming

yellow tint chords

blue tint chords
Additional items industry must consider

- Compatibility with machines
- Compatibility with dishware
- Product shelf life and package compatibility
- Process-ability
- Cost
What Amway did: A historical perspective

• In the early 70’s Amway offered three automatic dish detergent formulas:
 – A high phosphorus, low recommended use product
 – An 8.3% P formula to fit certain municipality regulations
 – A zero P formula marketed only for users with soft water
• In the late 70’s, additional regulations forced the elimination of the high P formula.
• In the early 2000’s SKU consolidation forced the elimination of the zero P formula.
• In 2006, a multi-year research project was initiated to formulate a new, globally acceptable phosphate free formula.
• In Oct, 2008, Amway’s first phosphate free formula that performed well in hard water was launched in the U.S.
• In April, 2011 this same formula was launched across Europe.
• In 2012 this same formula is being launched in Japan.
What Amway did: Developing a P-free formula

- From a formulation perspective (very generally)
 - Removed phosphate...
 - And increased/added:
 - Alkalinity
 - Sodium citrate (weak builder)
 - Nonionic surfactant
 - Additional protease
 - A novel biodegradable crystal inhibitor
 - Maintain bleaching performance
What Amway did: Developing a P-free formula

- Searched for novel compounds that could potentially deliver similar chemistry
- Looked for synergies between ingredients
- Screened hundreds of possible formulations for hard water performance

Five Cycle Hard Water (15 grain) Automatic Dish Detergent Performance

<table>
<thead>
<tr>
<th></th>
<th>Spotting</th>
<th>Filming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate Containing Competitor A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphate Containing Competitor B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphate Containing Competitor C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphate Free Amway Formula</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What Amway did: Developing a P-free formula

- Confirmed full formula biodegradability (OECD 301A) at a third party lab
- Had the formula recognized by the U.S. EPA for formulating using chemistry that is “safer for you and the planet”
- Performed extensive in-home use tests in both U.S. and Russian markets
- Developed a method and tested for microbe removal from dishware
- ... Then, finally launched a formula that saw only slight revenue growth and (unfortunately) a slight increase in consumer complaints
Conclusions

• Replacing phosphate was a long and arduous journey with no simple substitution solution.

• We (industry) have an economic incentive to continue to move towards more safe, more “green” consumer goods.

• There usually is no such thing as a “simple” swap.

• We can usually get there (or close) but it takes time and frequently new molecules from external primary research… Often, the return on investment for alternative assessment is low.
Thank You!